CIass-N-Diff: Classification-lnduced Diffusion Model

Significance

e Skin cancer diagnosis models often fail to generalize across skin tones
due to imbalanced datasets

diverse dermoscopic images

* Class-conditioned generative models can help to generate class-faithful,

Contributions

» Class-N-Diff: A novel diffusion-based model that jointly trains a
classifier for conditional image generation

* The classifier acts as a training guide, improving the fidelity and
class alignment of generated samples

Our proposed Class-N-Diff model consists of:
A Diffusion Transformer (DiT) and a ResNet101-based classifier
* Ashared training loop based on the value of y, where classification loss
improves generation quality
* Combined Loss Function:
L = Dif fusion Loss + A * Classification Loss
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Proposed Class-N-Diff framework

e Class-N-Diff Training: ISIC 2016-20 (Benign: 52874, Malignant: 5090)
 C(lassification model evaluation datasets:

ISIC-2018
Fitzpatrick17k 759 252 Atlas 1,518 504
ASAN MClass

Conditional DiT DiT without the classification model

2 Yy =0.25,and A =0.2
Optimizer step: once in three steps

Optimizer step: every step

Optimizer step: once in three steps

Dataset and Experiment
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3 Periodically increase y from Oto 1, and A = 0.2,

Class-N-Diff 4 Periodically increase y from0Oto 1,and A =0.2,

5 Periodically increase y from Oto 1, and A = 0.3,
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Results

Model |Seting| FID(SK | FID(10K) | FID(20k) | MsSSM

Conditional DIiT 1 69.100 48.750 45.770
2 27.210 15.940 18.270
3 3.930 2.710 2.420
Class-N-Diff
4 2.690 2.640 2.750
5 4.290 3.900 2.430
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Conclusion

Class-N-Diff can generate realistic and diverse dermoscopic images

leading to fairer diagnostic classification

Shows promise for building equitable diagnostic systems through
classification-guided generation

References

W. Peebles et al., “Scalable Diffusion Models with Transformers,” CVPR, 2023
K. He et al., “Deep Residual Learning for Image Recognition,” CVPR, 2016
ISIC Archive 2016—-2020: International Skin Imaging Collaboration Dataset.

BN e

I o

R. Daneshjou et al.,
image set,” Science Advances

Disparities in dermatology Al performance on a diverse, curated clinical

Contact: nusrat.munia@uky.edu

Code: https://github.com/Munia03/Class-N-Diff
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