Class-N-Diff: Classification-Induced Diffusion Model

Can Make Fair Skin Cancer Diagnosis

Nusrat Munia, Abdullah Imran

Department of Computer Science University of Kentucky, Lexington, KY, USA

Significance

- Skin cancer diagnosis models often fail to generalize across skin tones due to **imbalanced** datasets
- Class-conditioned generative models can help to generate class-faithful, diverse dermoscopic images

Contributions

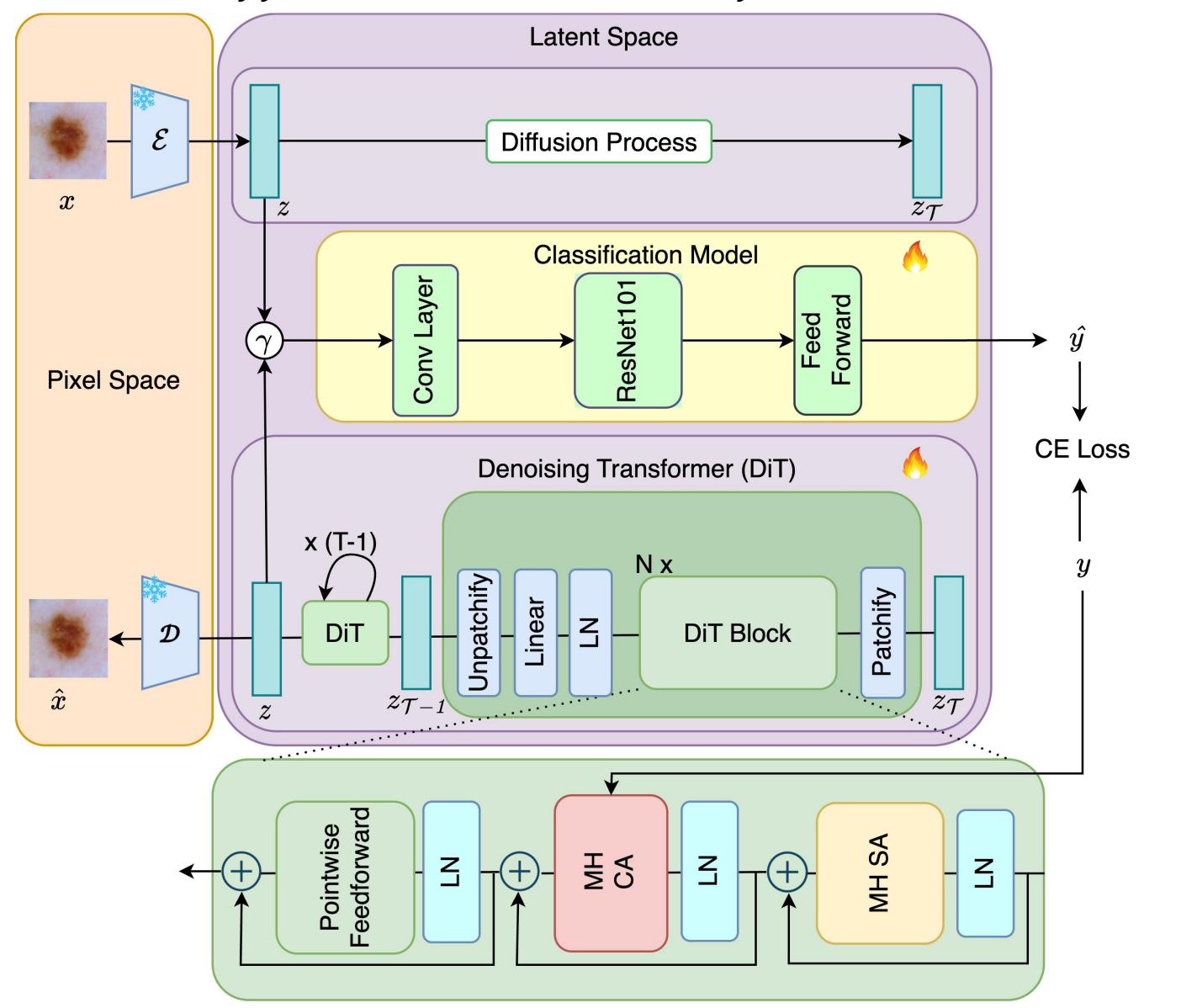
- Class-N-Diff: A novel diffusion-based model that jointly trains a classifier for conditional image generation
- The classifier acts as a training guide, improving the fidelity and class alignment of generated samples

Methods

Our proposed Class-N-Diff model consists of:

- A Diffusion Transformer (DiT) and a ResNet101-based classifier
- A shared training loop based on the value of γ , where classification loss improves generation quality
- Combined Loss Function:

$L = Diffusion Loss + \lambda * Classification Loss$



Proposed Class-N-Diff framework

Dataset

Dataset and Experiment

Class-N-Diff Training: ISIC 2016-20 (Benign: 52874, Malignant: 5090)

Malignant

Classification model evaluation datasets:

Benign

Dataset

DDI	485	171	ISIC-2018	420	443			
Fitzpatrick17k	759	252	Atlas	1,518	504			
ASAN	793	59	MClass	160	40			
Model	Setting	Description						
Conditional DiT	1	DiT without the classification model						
Class-N-Diff	2	γ = 0.25, and λ = 0.2						
	3	Periodically increase γ from 0 to 1, and λ = 0.2, Optimizer step: once in three steps						
	4	Periodically increase γ from 0 to 1, and λ = 0.2, Optimizer step: every step						
	5	Periodically increase γ from 0 to 1, and λ = 0.3, Optimizer step: once in three steps						

Results									
Model	Setting	FID (5k)	FID (10k)	FID (20k)	MS-SSIM				
Conditional DiT	1	69.100	48.750	45.770	0.583				
Class-N-Diff	2	27.210	15.940	18.270	0.372				
	3	3.930	2.710	2.420	0.316				
	4	2.690	2.640	2.750	0.462				
	5	4.290	3.900	2.430	0.285				
ISIC real data samples			Class Conditional DiT (1)						
Class-N	V-Diff (2)		Class-N-Diff (3)						

Visualization of density plots to compare the real and the generated data Visualization of Principal Components (PCs) to compare the real and generated data Separate classifier Class-N-Diff Class-N-Diff Classification Accuracy Performance Comparison

Class-N-Diff (5)

Class-N-Diff (4)

Synthetic

Malignant

Benign

Conclusion

- Class-N-Diff can generate realistic and diverse dermoscopic images leading to fairer diagnostic classification
- Shows promise for building equitable diagnostic systems through classification-guided generation

References

- W. Peebles et al., "Scalable Diffusion Models with Transformers," CVPR, 2023
- K. He et al., "Deep Residual Learning for Image Recognition," CVPR, 2016
- ISIC Archive 2016–2020: International Skin Imaging Collaboration Dataset.
- R. Daneshjou et al., "Disparities in dermatology Al performance on a diverse, curated clinical image set," Science Advances

Contact: nusrat.munia@uky.edu